
43rd AIAA Aerospace Sciences Meeting and Exhibit AIAA 2005-1369
10-13 January 2005, Reno, Nevada

1

American Institute of Aeronautics and Astronautics

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

SmaggIce: Further Progress in Software for Gridding 2D
Iced Airfoils

Mary B. Vickerman*, Yung K. Choo†, Herbert W. Schilling‡, Donald C. Braun§, Marivell Baez**, Barbara J. Cotton††
NASA Glenn Research Center, Cleveland, OH, 44135

This paper presents progress being made in developing the SmaggIce software toolkit
which is used to create structured grids for 2D iced airfoils in preparation for Computa-
tional Fluid Dynamics (CFD) analysis. A brief introduction is given which establishes the
reasons for performing CFD analysis in icing research and the need for software to help with
this. A short overview of a previously released version of SmaggIce (v1.2) is included.
SmaggIce v1.2 includes tools for geometry preparation, a prerequisite task to performing
gridding operations. Details of features added in the current version of SmaggIce (v1.8) are
presented. These include tools for domain decomposition, block boundary modification,
gridding, and grid quality display. Finally, plans are listed for the final version of SmaggIce
(v2.0) which will include additional boundary modification tools and solution display.

I. Introduction

A. The need for CFD with 2D iced airfoils
Two dimensional icing aero analysis using CFD tools has its limitations and is not intended to address 3D issues.

However, it is a cost-effective engineering tool that provides insights into the icing aerodynamics and preliminary
performance results valuable to pre-tunnel and pre-flight test planning, as well as post-test analysis. The 2D CFD
results need to be examined for grid independence, checked for their reasonableness to the physics of the problem,
and interpreted correctly considering the inadequacies of turbulence models and the numerical method.1

Fully 3D steady/unsteady flow analysis over an aircraft (or even a finite wing) with highly 3D ice is very expen-
sive in terms of human and computer time. In addition, validity of the numerical simulation will be challenged since
there is no universally applicable turbulence model for separated flows with ice. On the other hand, direct numeri-
cal simulation (DNS), which doesn’t require turbulence models, is too expensive to be a practical engineering tool
even with today’s massively parallel computers and will remain so for any foreseeable future.

Acquisition of 3D ice shape geometry is still very difficult and expensive.2 Also, generating quality grids and
simulating steady flow over 3D ice are both expensive and challenging tasks at the present time.3 Unsteady flow
simulation, even simplified detached eddy simulation (DES) with ice, will be much more expensive compared with
the steady flow solutions of Reynolds Averaged Navier-Stokes (RANS) equations with parallel computing power
for even a square wing section.4

Two dimensional CFD can support quasi-3D analysis, which has the potential to be a cost-effective engineering
approach for 3D icing aero simulations. However, we have yet to see the development or effectiveness of a quasi-
3D method that combines 2D CFD airfoil analysis5 with lifting-line theory.6,7,8

B. Choice of structured grids
Flow-field characteristics over iced airfoils are affected by ice shapes in addition to other factors such as the an-

gle of attack and freestream conditions. Therefore, accurate calculation of the aerodynamic performance of iced
airfoils requires accurate calculation of the flow field around the ice features, which in turn requires having a high

* Computer Scientist, Computational Sciences Branch, 21000 Brookpark Rd./M.S. 142-5.
† Aerospace Engineer, Icing Branch, 21000 Brookpark Rd./M.S. 11-2, Member AIAA.
‡ Computer Scientist, Computational Sciences Branch, 21000 Brookpark Rd./M.S. 142-4.
§ Computer Engineer, Experimental Data Software Branch, 21000 Brookpark Rd./M.S. 142-5.
** Computer Scientist, Experimental Data Software Branch, 21000 Brookpark Rd./M.S. 142-5.
†† Computer Specialist, Experimental Data Software Branch, 21000 Brookpark Rd./M.S. 142-1.

American Institute of Aeronautics and Astronautics

2

SmaggIce version 2.0
clean/iced

airfoils

WIND flow
solver

Geometry evaluation,
preparation, modification

Modify grid
• smooth, orthogonalize
• refine
• stretch
• divide, merge

Quality check

Block creation
• domain decomposition
• block boundary

discretizationModify blocks:
• divide, merge
• boundary shape
• point distribution

Grid generation

Interface to
flow solverdisplay solution

Ice characterization

CGNS file

Aero properties,
L, D

submit
monitor
evaluate

blocks/grids, connectivity,
boundary conditions

solution
Interpolate solution

clean/iced
airfoils

clean/iced
airfoils

WIND flow
solver

Geometry evaluation,
preparation, modification

Modify grid
• smooth, orthogonalize
• refine
• stretch
• divide, merge

Quality check

Block creation
• domain decomposition
• block boundary

discretizationModify blocks:
• divide, merge
• boundary shape
• point distribution

Grid generation

Interface to
flow solverdisplay solution

Ice characterization

CGNS fileCGNS file

Aero properties,
L, D

Aero properties,
L, D

submit
monitor
evaluate

blocks/grids, connectivity,
boundary conditions

solution
Interpolate solution

Figure 1. SmaggIce role in icing aerodynamic simulation and analysis process.

quality grid for the flow domain to be simulated. Using blocked structured grids allows for more precise control of
the grid structure and density in the flow field, compared to using unstructured grids. Although it is easier to auto-
mate the generation of unstructured grids, they generally require more cells and a corresponding increase in memory
usage and CPU time when run through flow solvers. SmaggIce makes use of structured grids for the precise grid-
ding control and better performance they provide in 2D. It overcomes the difficulties of creating these grids by
providing partially automated blocking and gridding tools, yet also provides the necessary precise grid quality con-
trol through interactive boundary, block, and grid modification tools.2, 9

C. Gridding tool specifically for iced airfoils
When studying airfoil icing, a wide variety of ice shapes are encountered, all of which affect the flow field. To

capture those ice-induced flow features, a grid generator has to provide effective grid creation and grid-quality con-
trols. For icing aero analysis, handling of the ice-shape geometry cannot be separated from grid generation, since
ice geometry imposes a particular challenge to grid generation.

SmaggIce is a 2D software toolkit that will streamline the simulation process for icing effects on airfoil perform-
ance, from geometry, to grid, to flow solution. The toolkit will provide tools to (1) take natural, simulated, or
computer-generated ice shapes, and examine and modify them as needed,10 (2) generate grids and evaluate and con-
trol their quality and density, (3) prepare files to use in running an application flow solver such as WIND11, and (4)
monitor the run. This procedure can be iterated to improve accuracy of the solution, as illustrated in Figure 1.

SmaggIce v1.8 provides
tools to perform ice shape
preparations, domain decom-
position, block boundary
modification, grid generation
and modification, grid qual-
ity analysis, and grid output.
SmaggIce v2.0 will addition-
ally provide tools to perform
additional grid modifications
and to view CFD results.
See Figure 1 for an overview
of how SmaggIce fits into
this process. With SmaggIce,
icing aerodynamic analysis
using CFD will become a
practical engineering process
that will provide insights to
the flow phenomena and
provide preliminary engi-
neering answers on effects of
ice on aerodynamic perform-
ance.

II. Summary of Version 1.2 Capabilities
Version 1.2 of SmaggIce for Unix operating systems was released in August 2002, and the Microsoft Windows

version was released in March 2003 through the NASA Software Repository*. Its capabilities are detailed in Refer-
ence 12. We will present a brief summary of its capabilities here, as they relate to the domain decompositions and
gridding aspects of the toolkit. Besides its capabilities to measure and record ice shape characteristics, SmaggIce
allows the user to examine and prepare ice shape data for the grid generation process.

A. Ice shape characterization
Ice shape characterization tools are used to measure and record location, length, angle, arc length, and ice area.

This gives users the means to measure the physical characteristics of ice such as icing limit locations, horn height

* https://technology.grc.nasa.gov/software

American Institute of Aeronautics and Astronautics

3

Figure 2. Creating a wake.

and angle, distance along the clean airfoil from the leading edge to a prominent ice location, or the area of ice be-
tween two user-specified points. These tools provide an aid in the process of determining the relationship between
ice characteristics and their effects on aerodynamic performance.

B. Geometry preparation
In SmaggIce, an airfoil is defined as a sequence of points, i.e., (x,y) coordinates, starting at the upper (or lower)

surface of the trailing edge and following along the surface toward the leading edge and then back toward the trail-
ing edge along the lower (or upper) surface. Ice shapes are also defined by a sequence of points, although they do
not have to include points back to the trailing edge. All modifications to the geometry are made to these points.
1. Boundary modification

Interactive ice shape control is used to prepare the 2D surface for gridding. Any subcurve (or the entire curve) of
a surface can be selected for processing. The types of functions that can be applied to surfaces are smoothing, redis-
cretization, point redistribution, and correction of obvious input errors such as a twisted ice surface. Systematic
smoothing of the iced surfaces in a controlled manner is accomplished using a control point formulation.13 With this
feature, a user can smooth irregular ice surfaces to a level acceptable to the user’s grid generation tools. Users can
control the level of smoothing by choosing the number of control points in constructing curves. Direct reshaping of
the curve is done by dragging control points associated with the curve. Rediscretization provides a means of increas-
ing/decreasing the number of points, distributing the points by curvature, and controlling the uniformity of their
distribution. In addition, hyperbolic tangent stretching is provided. These control features of SmaggIce not only pre-
pare the ice surface for gridding and CFD flow simulation, but they also allow users to correct any deficiencies (e.g.,
twists, gaps, too many or too few points) in the input data.
2. Create and place artificial ice

A tool is provided to attach artificial (i.e., computer-generated) ice shapes such as triangles, rectangles, quarter-
circles, half-circles, and trapezoids to the surface of an airfoil. Parameters for location, replication, size, and number
of points can be specified. This tool facilitates studies of the effects that various ice shapes and ice roughness have
on aerodynamic performance.

III. Version 1.8 Capabilities

A. Ice shape preparation
Additional tools to prepare an ice shape for gridding are provided in the current version of SmaggIce. One of

these tools can extend the trailing edge of an “open” airfoil (i.e., one whose first and last points do not coincide).
Another can extend the geometry of an “open” ice shape (i.e., one whose geometry does not include the complete
airfoil, but only the geometry for the ice accretion at the leading edge) to the clean airfoil. This is used to create iced
airfoil geometry by combining clean airfoil data with open ice data from a tracing as reported in Reference 14.

B. Domain decomposition
Domain decomposition divides the flow domain into blocks, and is performed prior to gridding. The domain is

decomposed in steps, with various types of blocks created during each step.
1. Wake definition

The wake extends downstream from the trailing edge of the iced airfoil. This is used to set up the cut for the C-
shaped domain that will be used during domain decomposition. During wake definition, the user specifies the num-
ber of points in the wake, the
length, and the angle of the
wake. The spacing of the wake
points closest to the trailing
edge is based on the spacing of
points on the airfoil at the trail-
ing edge. The rest of the point
spacings are set to accommo-
date the specified length and
number of points. Wake defi-
nition in SmaggIce is shown in
Figure 2.

American Institute of Aeronautics and Astronautics

4

2. Viscous sublayer block
The viscous sublayer block is a thin C-shaped block that wraps around the wake and iced airfoil. This block (1)

serves as a transition layer from rugged ice to a smoother outer boundary of this block, and (2) provides a very dense
mesh near the no-slip boundary with firm control. The viscous sublayer is specified by the number of points in the
radial direction, the thickness of the block, and the ini-
tial grid spacing (adjacent to the iced airfoil and wake).
The spacing of the points in the radial direction is de-
termined by these three parameters. The points along
the inner boundary of the viscous sublayer block are
created to be in the same locations as the points along
the wake and iced airfoil. Creation of the viscous
sublayer is shown in Figure 3.

Concave areas of ice can introduce tangles in the
viscous sublayer block. These tangles can be removed
by reducing the thickness of the block, manually
smoothing the ice surface before creating the block, or
using an automatic process to smooth out the inner and
outer edges of the viscous sublayer block. The effects
of automatic smoothing can be seen in Figure 4.

In the case of airfoils with “horn-shaped ice” such
as the one shown in Figure 3, whose flow is dominated
by separated flows aft of the suction-side horn, a previ-
ous study indicates that the location of flow separation at the horn tip is critical to the airfoil performance, but de-
tailed geometry of other parts of the ice is not critical.15, 16 It should be noted that the upper horn-tip region on the
suction side is convex and is not affected by the smoothing process.

3. Near field

Near field decomposition lets the user define the blocking scheme and parameters for the near field. The outer
boundary of the near field consists of a semi-circle centered on the leading edge point and a parallelogram abutting
the semi-circle and extending to the end of the wake. The inner boundary is created to be abutting one-to-one with
the outer boundary of the viscous sublayer block. The initial grid cell spacing along that inner boundary is set to
match the last cell spacing along the outer boundary of the viscous sublayer.

The user selects the basic blocking topology to be used when creating the near field. Current choices are single
block (for clean airfoils or airfoils with non-complex ice shapes) and radial cut (for more complicated ice shapes).
Parameters are specified to set the radius of the leading edge semi-circle, the number of points in the radial direction,
and for radial cut topology, the number of radial cuts to use. For radial cut topology, the user can interactively select
and move the endpoints of the radial cuts, then shape the cuts, as shown in Figure 5. When the near field domain
decomposition is complete, the near field blocks are created and grids are generated for each of those blocks.

Figure 4. Viscous sublayer twisted in concave areas (left); smoothed (right).

Figure 3. Viscous Sublayer

flow
domain

airfoil airfoil

flow
domain

flow
domain airfoil

American Institute of Aeronautics and Astronautics

5

Figure 6. Outer block, close-up view.

4. Outer block

The user defines parameters
for generating the outer block.
The outer boundary of the outer
block consists of a semi-circle
centered on the leading edge
point and a rectangle abutting
the semi-circle and extending to
the end of the wake, as shown
in Figure 6 and Figure 7. The
inner boundary is created to
overlap the outer boundary of
the near field. The user
specifies the number of cells to
overlap, the number of points in
the I-direction and J-direction of
the grid, and the outer radius of
the semi-circle at the leading
edge. After the parameters are
specified, the boundaries of the
outer block and its grid are
generated.

Figure 5. Near field with modifiable radial cuts.

American Institute of Aeronautics and Astronautics

6

5. Boundary conditions

During domain decomposition, appropriate boundary conditions are assigned to block boundaries. These bound-
ary conditions are stored along with the geometry for each block and output with the geometry when saving to a
CGNS file. This saves the user the extra step of having to use a separate program to define the boundary conditions.
6. Block connectivity

The viscous sublayer block and near field blocks are created to have one-to-one abutting connectivity with each
other, while the near field blocks and the outer block have overlapping (overset) connectivity between them. These
connectivities are stored for each block, along with the geometry. When modifications are made to block bounda-
ries (rediscretizing, redistributing points, dividing and merging grids), the connectivity information is maintained or
modified as necessary. The connectivity information is output with the geometry when saving to a CGNS file. This
saves the user the extra step of having to use a separate program to define the connectivities between blocks.

Inverse bilinear interpolation is used to compute the overlapping connectivities – at boundary points of the out-
ermost near field blocks that overlap the outer block and at the boundary points of the outer block that overlap near
field blocks. An efficient and robust algorithm was developed that uses fast algebraic calculations rather than an
iterative procedure. The algorithm identifies and properly handles every possible degenerate special case of a quad-
rilateral cell.
7. Block boundary modifications

The same tools that are used for geometry preparation also can be used to modify block boundaries. For exam-
ple, the Change Free Form tool can be used to adjust the shape of a block boundary after the block has been created.
In step 1 (Figure 8), the subcurve of the boundary to be modified is selected. In step 2 (Figure 9), control points are
dragged to change the shape of the subcurve. When the boundary is modified, the grid is removed, since it no
longer matches the boundary. A preview of the adjusted points is shown. When the changes are applied, the abut-
ting boundary from the adjacent block is also changed to keep the connectivity intact. In step 3 (Figure 10), the
grids are regenerated for the two blocks whose boundaries were modified.

Figure 7. Outer block, wide view.

American Institute of Aeronautics and Astronautics

7

Figure 9. Modify block boundary (step 2) – shape of the curve is changed.

 Figure 8. Modify block boundary (step 1) – curve is selected.

American Institute of Aeronautics and Astronautics

8

In this example, changes to a boundary are propagated to the shared edge of the one-to-one abutting block.

Other methods of propagation may also be useful, and these will be provided by in SmaggIce v2.0.
8. Match cell spacing

Frequently, points need to be distributed along a block edge so that the cell spacings match those of the block's
neighbors. SmaggIce provides a tool to do this. The spacing can match at either end or both ends of a block edge.

C. Grid generation and modification
To generate its grids, SmaggIce uses transfinite interpolation followed by elliptic smoothing. The elliptic

smoothing is done using the ELLIP3D routine from a gridding package provided by David Saunders of NASA
Ames Research Center. It uses Thomas Middlecoff background control functions. The transfinite interpolation is
done using the TFI2D routine from the same package. Several parameters to the ELLIP2D function, such as number
of iterations and tolerance, can be modified by the user.

SmaggIce can do two kinds of grid smoothing. The first again uses ELLIP2D to do elliptic smoothing on the
grid of the currently selected block. The second kind of smoothing smoothes across two abutting blocks. The user
first selects a subcurve on the shared boundary between the blocks. A sub-grid consisting of grid cells from both
blocks on either side of the subcurve is then smoothed using Laplace smoothing. This smoothing necessarily modi-
fies the location of the selected subcurve.

Other tools which allow the user to modify grids include dividing a gridded block, merging two gridded blocks
which are abutting one-to-one, and copying the spacing of points along one edge of a gridded block to the interior
grid lines.

D. Grid quality analysis
Grid quality measurements such as aspect ratio, orthogonality, skewness, and stretching can be calculated and

displayed graphically on the gridded blocks as color-coded overlays. Minimum and maximum values for these
measurements are also displayed. Figure 11 shows grid cells colored by orthogonality. This allows the user to
quickly identify areas of poor grid quality, which may then be repaired.

E. Output
There are several options for output in SmaggIce. 2D grids can be saved in PLOT3D format. Airfoil geometry

can also be extruded into 3D geometry by applying sinusoidal variations in the spanwise direction with a specified

Figure 10. Modify block boundary (step 3) – grid is regenerated.

American Institute of Aeronautics and Astronautics

9

sweep angle. This 3D geometry can be saved in PLOT3D or point cloud format (which simply lists the x,y,z coor-
dinates of each point of the surface).

A goal of the SmaggIce project is to use CGNS17 as a file format to transfer information to and from other CFD
applications like post-processors and flow solvers like WIND. Using the CGNS format will allow ice geometry,
grids, boundary conditions, connectivity, and solutions to all be saved in a single file. While we have had some suc-
cess with transferring data from SmaggIce to post processors (like TecPlot) using CGNS, we have been unable to
make SmaggIce-generated CGNS files work with WIND. We are working with the developers of CGNS and WIND
to fix this problem. The CGD file format currently used by WIND is being considered as an alternative in case the
problem cannot be resolved.

F. General/convenience capabilities
1. Scripting

A graphical user interface (GUI) is provided to interact with the SmaggIce software. A scripting interface is also
provided to the user, since it offers several benefits. Frequently done steps in a gridding process can be saved to a
script file and run over and over again. This saves time and reduces user error compared to repeating these steps
using the GUI. Scripting enables the recording feature of SmaggIce. By turning on recording, all of the user's ac-
tions are recorded to a script file which can then be replayed. The file can also serve as documentation of the steps
that the user took to get a certain state in SmaggIce. Since scripts are easy-to-read text files, they can be edited and
reused for parametric studies. An example script is shown in Figure 12.

The scripts are written in the Python programming language. Python is powerful programming language with a
very clear syntax that is frequently used as a scripting language for engineering and research applications.18 Smagg-
Ice has extended Python to include functions specific to SmaggIce.

If SmaggIce encounters an error while trying to run a script, a dialog window lets the user know that an error oc-
curred and that more information about the error is given in the Message window. All SmaggIce scripting functions
throw an exception if there is an error so the script writer can use standard Python exception handling methods in the
script.

2. Undo/Redo

It is extremely important that a complex, graphically oriented interactive program like SmaggIce have undo ca-
pability. SmaggIce has full undo and redo capability for all user actions that affect the data defining the elements,
wake, and blocks. The maximum number of undo levels is set by the user via a preference window.
3. Save state

The save state feature provides a mechanism to save the "state" of the SmaggIce application to a file. The state
consists of all information about the elements, blocks, grids, and settings from the current session. Restoring the
state consists of reading the state file into SmaggIce. Saving the state before quitting the program allows the user to
restart SmaggIce and quickly recover the previous session, without having to redo all the steps from a previous ses-
sion.

FileRead('/usr/local/u1/geometry/944.exp' , 'ELEMENT');
SetRefAirfoil();
SmgChooseSubcurve(561, 38);
SmgRediscretizeSubcurve(250 , 4 , 0);
SmgWake(40 , 15 , 3);
SmgViscSublayer(20 , 0.003 , 1e-05 , SMG_true);
SmgNearFieldRadialCuts(0.6 , 20 , [(78, SMG_lowerLeg, 0.393983),
(232, SMG_radius, 47.3174), (268, SMG_radius, 90), (324, SMG_radius, 157.554),
(378, SMG_upperLeg, 0.268703)]);
SmgSelectObject(6);
SmgChooseSubcurve(0, 19, EDGE_IMAX);
SmgChangeFreeForm(18 , 4 , [(3, -0.0717987, 0.155125) ,
(2, 0.0240446, 0.024011)]);
SmgTanhRedist(0 , 61);
SmgGenGrid(3);
SmgOuterblock(3 , 2 , 150 , 20 , 15);

Figure 12. Sample script file.

American Institute of Aeronautics and Astronautics

10

4. Preferences
Preferences are used to set the default behavior for certain operations. For example, gridding preferences in-

clude tolerance, the maximum number of iterations, and relaxation factors. Preferences can be set using a GUI
window and will be used for the current session. They may also be saved to a file for use in all subsequent sessions.
The preference file is a text file which can be edited by the user, if desired.
5. Help

Updated help has been added for new features. The help files are available as HTML and can be viewed using a
Web browser (e.g., Netscape or Internet Explorer). They may be displayed from within SmaggIce or can be viewed
from outside the program.
6. Portability

SmaggIce is intended to run on UNIX and MS-Windows platforms. It has been tested on SGI (IRIX), Sun (So-
laris), Intel (Red Hat Linux), and several MS-Windows platforms.

To run SmaggIce on a UNIX platform, you should have Web browser software for viewing help files. If you are
using the SmaggIce package that uses OpenGL, you must have the OpenGL libraries installed on your system.

To run SmaggIce on a PC running Microsoft Windows, you should have Microsoft Internet Explorer or Netscape
Web browser software for viewing help files, and third party X-server software installed on your PC that allows you
to display X Window applications. X-server software is available from various sources. SmaggIce has been tested
with several X-servers (e.g., Hummingbird Exceed, HOBLinkX11, MI/X 4.0, Wina/XE, X-ThinPro).

G. Development details
SmaggIce is written in C and FORTRAN. C is used for the GUI, control, interaction, graphics, memory man-

agement, and other computational routines; FORTRAN is used for some computational routines.
SmaggIce contains an embedded Python interpreter. Python has been extended to let the user modify SmaggIce

data using Python scripts in script files. For more information about Python see http://www.python.org.
The GUI was developed for the X Window System using Motif, Xt Intrinsics, and Xlib functions. This will aid

in the portability of the user interface across multiple computer platforms running X. Whenever possible, the GUI
uses higher level libraries (Motif widgets) rather than the functionally equivalent Xt or Xlib libraries, because the
higher-level code hides many of the details. This makes the code less complex, so the application is more easily
maintained.

OpenGL is used for the graphics drawing. It uses the GLX extensions to X to interface with the windowing sys-
tem, but the Mesa library can be used if the client workstation does not have OpenGL or if the X server does not
support the GLX extensions.

Dynamic memory management is used to allocate only as much memory as is necessary for data storage and ac-
cess. This allows the program to process models whose size is limited only by the amount of memory on the host
computer. It also allows multiple input files to be read in and processed during a single session. As objects are read
in or created, memory is allocated for them to store the object type as well as attributes describing the object. Space
is also allocated for the data points defining the geometry, connectivity, and boundary condition data, and pointers to
those are stored with the object. When additional objects are read in or created, or as geometry is modified (e.g.,
points are added), memory is reallocated as needed. When objects are deleted, the memory is freed to make room for
new objects.

IV. Plans for Version 2.0
Version 2.0 of SmaggIce is currently under development. Plans are to include tools to display solutions com-

puted by CFD software and to provide more tools for modifying blocks and grids. After a solution is generated
through the CFD flow solver (such as WIND), solution data (such as pressure or velocity vectors) will be able to be
displayed as colored overlays on the gridded blocks. This will help the user identify areas where the grids may need
to be modified. New block and grid modification tools will include grid stretching and refining, generalized divide
block (not restricted to dividing along a grid line), block merging, and introducing abutting mismatched block edges,
rather than requiring abutting one-to-one edges as in version 1.8.

 Another enhancement will be the capability to easily change block boundaries and have those changes propa-
gate throughout the grids (to shared edges and edges on the opposite side of the block). After the number of
boundary points and/or their locations are modified along an edge of a block, it is often desirable to propagate those
modifications to other block edges. Algorithms are being developed to allow automatic propagation of the number
of points from the newly modified “donor” edge of the current block to the opposite “receiver” edge of that block,
thus making the block grid-ready (i.e., the opposite edges of the block have the same number of points). Those al-

American Institute of Aeronautics and Astronautics

11

gorithms can preserve the approximate distribution (that is, the varying density of boundary points along the edge)
of the old receiver points using linear interpolation or an efficient custom-developed smooth interpolation method.
Alternatively, those algorithms can locate the new receiver points along the old receiver edge according to the dis-
tribution of the new donor points. Also, algorithms are being developed to allow automatic propagation of point
distributions from the donor edge of the current block to shared receiver edges of adjacent blocks, either by forcing
one-to-one connectivity or else by moving the old receiver points to the shape of the donor’s new edge while pre-
serving the old number and varying densities of receiver points and allowing abutting mismatched connectivity
between the donor and receiver edges. Optionally, the user will be able to automatically apply those algorithms re-
cursively outward from the donor edge of a near field block that was just modified, propagating the modifications to
multiple near field block edges away from the iced airfoil until the outer block is reached.

V. Conclusion
This paper presents the current status and plans of ongoing development of a software toolkit, SmaggIce, that

will streamline the entire process of icing aero analysis, from geometry to flow solution. The main focus was on
grid generation tools which will be available in version 1.8, scheduled for release in February 2005. It contains sev-
eral unique grid generation features for iced airfoils. To provide a complete picture of a fully developed SmaggIce
2D software system, a brief overview is given of geometry modeling in the previously-released version 1.2 and a
discussion of plans for the final phase of the software in version 2.0 of SmaggIce.

SmaggIce version 1.8 will provide essential tools for grid generation over iced airfoils. Additional interactive
and automatic features for domain decomposition and grid generation over iced airfoils will be implemented in ver-
sion 2.0 to provide further efficiency and convenience. It should also be noted that SmaggIce v1.8 can also be used
for grid generation by those who are interested in airfoil analysis and design without ice accretion.

References
1. Potter, M.C., Wiggert, D.C., Hondzo, M., and Shih, T.I-P, “Mechanics of Fluids,” 3rd edition, Brooks/Cole,

Pacific Grove, California, 2001.

2. Choo, Y.K, Vickerman, M.B., Hackenberg, A.W., Rigby, D.L., “An Aerodynamic Simulation Process for Iced
Lifting Surfaces and Associated Issues,” SAE Paper 2003-01-2135, June 2003.

3. Thompson, D., Mogili, P., Chalasani, S., Addy, H., Choo, Y., “A Computational Icing Effects Study for a
Three-Dimensional Wing: Comparison with Experimental Data and Investigation of Spanwise Variation,”
AIAA Paper 2004-0561, Jan. 2004.

4. Mogili P., Thompson, D. S., Choo, Y., and Addy, H., “RANS and DES Computations for a Wing with Ice Ac-
cretion,” AIAA Paper 2005-1372, January 2005.

5. Chi, X., Zhu, B., Addy, H.E., Choo, Y.K., and Shih, T.I-P., "A Comparative Study Using CFD Techniques and
Turbulence Models to Predict Iced Airfoil Aerodynamics," AIAA Paper 2005-1371, Aerospace Sciences Meet-
ing, Reno, Nevada, January 2005.

6. Communication with Tom I-P Shih and Rich Hindman of Iowa State University, August 2005.

7. DeYoung and Harpter, NACA Report 921, 1948.

8. Weissinger, NACA TM 1120, 1947.

9. Choo, Y.K., Slater, J.W., Vickerman, M.B., Van Zante, J.F., “Geometry Modeling and Grid Generation for
Computational Aerodynamic Simulations around Iced Airfoils and Wings,” Proceedings of 8th International
Conference on Numerical Grid Generation in Computational Field Simulations, edited by Soni et al., pp. 561-
570, June 2002.

10. Vickerman, M.B., Choo, Y.K., Schilling, H.S., Baez, M., Braun, D.C., Cotton, B.J., “Toward an Efficient Icing
CFD Process Using an Interactive Software Toolkit – SmaggIce 2D”, AIAA Paper 2002-0380, January 2002.

11. Bush, R.H., Power, G.D., Towne, C.E., “WIND: The Production Flow Solver of the NPARC Alliance”, AIAA
Paper 98-0935, January 1998.

12. Cotton, B.J., Baez, M., Vickerman, M.B., “SmaggIce Users Guide, Version 1.2”, Feb. 2003.

American Institute of Aeronautics and Astronautics

12

13. Chung, J., Reehorst, A., Choo, Y., and Potapczuk, M., “Effects of Airfoil Ice Shape Smoothing on the Aerody-
namic Performances,” AIAA Paper 98-3242 AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland,
July, 1998.

14. Addy, H.E., “Ice Accretions and Icing Effects for Modern Airfoils,” NASA/TP-2000-210031/SUPPL, April
2000.

15. Broeren, A., Addy, H., and Bragg, M., “Flowfield Measurements About an Airfoil with Leading Edge Ice
Shapes”, AIAA Paper 2004-0559, Reno, NV, Jan. 2004.

16. Bragg, M. B., Broeren, A. P., and Blumenthal, L. A., “Iced Airfoil and Wing Aerodynamics”, ASE Paper
2003-01-2098, June 2003.

17. Legensky, S.M., Edwards, D.E., Bush, R.H., Poirier, D.M.A., Rumsey, C.L., Cosner, R.R., Towne, C.E., “CFD
General Notation System (CGNS): Status and Future Directions”, AIAA Paper 2002-0752, January 2002.

18. Python documentation, http://www.python.org/doc, May 27, 2004.

